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Results: What is the impact on the Problem Space?

e Adversarial generation < 2 minutes per app
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Results: What is the impact on the Problem Space?

e Adversarial generation < 2 minutes per app

e Restricting feature-space perturbations 6 does not hinder problem-space attack

e App statistics (e.g., size) do not become anomalous after injection
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Results: How much are app statistics affected?

e Adding all these features (+ side-effect features), what does it do to app statistics?

» Limiting feature-space perturbations 6 does not affect problem-space attack
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Outline

Adversarial ML evasion attacks against malware classifiers

e (lassic formulation of evasion attacks is ill-suited for reasoning about realizable evasive malware
e By reformulating, we can propose stronger attacks and easily compare against alternatives

e Practical end-to-end automatic adversarial malware as a service — how about defenses?

[IEEE S&P 2020] Intriguing Properties of Adversarial ML Attacks in the Problem Space

Dritting scenarios caused by threats evolving over time

e How dataset shift affects machine learning-based detectors in security settings

e The need for time-aware evaluations and metrics

Bigger Picture

e Detecting shifts with abstaining classifiers and classification with rejection

[USENIX Sec 2017 & IEEE S&P 2022] Transcend: Detecting Concept Drift in Malware Classification Models &
Transcending Transcend: Revisiting Malware Classification in the Presence of Concept Drift

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time

Quo vadis?

e Discussion of the future of trustworthy ML for system security

* Robust feature development, universal adversarial perturbations, realizable backdoors, drift forecasting,
and the role of abstractions towards the Platonic ideal of interesting behaviors
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Outline

Dritting scenarios caused by threats evolving over time

e How dataset shift affects machine learning-based detectors in security settings
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e Detecting shifts with abstaining classifiers and classification with rejection

[USENIX Sec 2017 & IEEE S&P 2022] Transcend: Detecting Concept Drift in Malware Classification Models &
Transcending Transcend: Revisiting Malware Classification in the Presence of Concept Drift

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time



ML for Malware Detection

[USENIX Sec 2019]
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Sources of Experimental Bias (1/3)

Temporal Inconsistency in Train/Test Sets
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Sources of Experimental Bias (1/3)

Temporal Inconsistency in Train/Test Sets
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Sources of Experimental Bias (1/3)
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Training

Kevin Allix et al. [ESSoS 2016] Testing

Are Your Training Datasets Yet Relevant?

An Investigation into the Importance of Timeline in
Machine Learning-based Malware Detection

Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon

Sn'T' - University of Luxembourg

Brad Miller et al. [DIMVA 2016]

Reviewer Integration and Performance
Measurement for Malware Detection
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Sources of Experimental Bias (2/3)

Temporal {good|mal}ware inconsistency

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract

94



Sources of Experimental Bias (2/3)

Temporal {good|mal}ware inconsistency

@@ s

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract

94



Sources of Experimental Bias (2/3)

Temporal {good|mal}ware inconsistency

@@e BsP

2019 2019 2019

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract

94



Sources of Experimental Bias (2/3)

Temporal {good|mal}ware inconsistency

@@e HxP

2019 2019 2019 2010 2012 2014

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract

94



Sources of Experimental Bias (2/3)

Temporal {good|mal}ware inconsistency

@@e HxP

2019 2019 2019 2010 2012 2014

new method ()

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract

94



Sources of Experimental Bias (2/3)

Temporal {good|mal}ware inconsistency

@@ Hg»

2019 2019 2019 2010 2012 2014

new method ()

Q99 XXX

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract

94



Sources of Experimental Bias (2/3)

Temporal {good|mal}ware inconsistency Violations may learn artifacts
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Sources of Experimental Bias (3/3)

Unrealistic Test Class Ratio
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Sources of Experimental Bias (3/3)

Unrealistic Test Class Ratio

* Training set: Fixed

e Testing set: Varying % of
mw (by downsampling gw)
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TESSERACT Framework
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TESSERACT Framework

C1 Temporal training consistency

=P time(training) < time(testing)
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TESSERACT Framework

C1 Temporal training consistency

=P time(training) < time(testing)
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TESSERACT Framework
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Endemic Problem
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Details: https://s2lab.kcl.ac.uk/projects/tesseract/poster-references.pdf
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Endemic Problem

1. Large Representative Dataset with Timestamps

2. Reproducible State-of-the-Art Algorithms

[USENIX Sec 2019]
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Dataset

¢ 129,729 Android applications from AndroZoo

e 10% malware

e Covering 3 years (2014 to 2016)
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TESSERACT Evaluations

[USENIX Sec 2019]
https://s2lab.cs.ucl.ac.uk/projects/tesseract

59



TESSERACT Evaluations

G1 Temporal training consistency

Experimental

Constraints G2 {good|mal}ware temporal consistency

C3 Realistic testing classes ratio

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract
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TESSERACT Evaluations

G1 Temporal training consistency

Experimental

Constraints G2 {good|mal}ware temporal consistency

C3 Realistic testing classes ratio

NDSS14
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[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract



TESSERACT Evaluations

Constraints.
NDSS14

1.U7 ___Best 10-fold (original paper)
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[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract



TESSERACT Evaluations

G1 Temporal training consistency
Constramnts.
Constraints G2 {good|mal}ware temporal consistency
C3 Realistic testing classes ratio
N DSS1 4
1.0 -fold (original paper)
82 o »‘%10 fold (C3 enforced)
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[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract



TESSERACT Evaluations

G1 Temporal training consistency
Constramnty.
Constraints C2 {good|mal}ware temporal consistency
C3 Realistic testing classes ratio
N DSS1 4
1.0 -fold (original paper)
82 o »\»10 fold (C3 enforced) :
0.71 Y\~ C1,C2,C3
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[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract



TESSERACT Evaluations

Experimental

Constraints

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time

https://s2lab.cs.ucl.ac.uk/projects/tesseract

G

C2 {good|mal}ware temporal consistency

G

1.0 ~

0.89 -

0.7 -
0.6 1
0.9 7
0.4 -
0.3 7
0.2 7
0.17

1 Temporal training consistency

3 Realistic testing classes ratio

NDSS14

= =

ina

Ao C1,C2,C3

0.0

1

4 7 10 13 16 19 22
Testing period (month)

AUT(F,24m) = 0.58

| paper)

" 10-fold (C3 enforced)

Area Under Time
AUT (Metric, Period)

59



TESSERACT Evaluations

Experimental

Constraints

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time

https://s2lab.cs.ucl.ac.uk/projects/tesseract
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TESSERACT Evaluations

G1 Temporal training consistency

Experimental Area Under Time
Constraints AUT(Metric, Period)
NDSS14 ESORICS17

Fl
AUT
O:O"""""""""""" O.O||||||||||||||||||||||;TA| O:O||||||||||||||||||||||||
I 4 7 10 13 16 19 22 T T T a1 1 9 I 4 7 10 13 16 19 22
Testing period (month) Testing period (month) Testing period (month)
AUT(F,,24m) = 0.58 AUT(F,,24m) = 0.32 AUT(F,,24m) = 0.64

[USENIX Sec 2019] TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time
https://s2lab.cs.ucl.ac.uk/projects/tesseract
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TESSERACT: Actionable Points

Realistic Evaluations Performance-Cost Trade Offs
* Reveals performance in more realistic setting e Detection Performance (e.g., AUT Fy)
* Removes space-time experimental bias e Labeling Cost for retraining (e.g., manpower)
* Practitioners: Choose Best Solution  Quarantine Cost for rejection (e.g., low-
 Researchers: Evaluate New Solutions contidence decisions)

Rejection™ Incremental Retraining Active Learning



TESSERACT: Actionable Points

Realistic Evaluations Performance-Cost Trade Offs
* Reveals performance in more realistic setting e Detection Performance (e.g., AUT Fy)
* Removes space-time experimental bias e Labeling Cost for retraining (e.g., manpower)
* Practitioners: Choose Best Solution  Quarantine Cost for rejection (e.g., low-
e Researchers: Evaluate New Solutions contidence decisions)
Rejection™

As well as measuring the overall effect
of drift we can identify specific aspects

of the drift and reject objects that are O
ikely to be misclassitied.

* [USENIX Sec 2017]
* [IEEE S&P 2022]

https://s2lab.cs.ucl.ac.uk/projects/transcend



Revisiting Classification in the Presence of
Concept Drift



Revisiting Classification in the Presence of
Concept Drift

Covariate Shift: Change in feature distribution P(x € X)
Prior-probability Shift: Change in class base rate PyeY)

Concept Drift: Change in ground truth definition ~ P(y € Y|x € X)



Transcend at Test Time

Underlying
Classifier

/'
New
Example

[USENIX Sec 2017]
https://s2lab.cs.ucl.ac.uk/projects/transcend/

63



Transcend at Test Time

y
N

[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Transcend at Test Time

=
N

[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Transcend at Test Time

[USENIX Sec 2017] Transcend: Detecting Concept Drift in Malware Classification Models
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Classification with Rejection

Awesome!

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Classification with Rejection

Theoretical Understanding

e Provide missing link with Conformal Prediction Theory

e Motivate the effectiveness of Conformal Evaluation

Awesome!

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift

https://s2lab.cs.ucl.ac.uk/projects/transcend/ &7



Classification with Rejection

Theoretical Understanding

e Provide missing link with Conformal Prediction Theory

e Motivate the effectiveness of Conformal Evaluation

Computational Optimizations

Awesome!

e New, sound and more tlexible Contormal Evaluators

e Faster thresholding

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift

https://s2lab.cs.ucl.ac.uk/projects/transcend/ &7



Classification with Rejection

Theoretical Understanding

e Provide missing link with Conformal Prediction Theory

e Motivate the effectiveness of Conformal Evaluation

Computational Optimizations

Awesome!

e New, sound and more tlexible Contormal Evaluators

e Faster thresholding

Extensive Evaluation
e Android, Windows PE and PDF malware
e Different classitiers (SVM, RF, GBDT)

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift

https://s2lab.cs.ucl.ac.uk/projects/transcend/ &7



Conformal Prediction

Conformal
Predictor

| .

Conformal
Evaluator

[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/

and Evaluation

CP theory lays foundation for CE

CPs outputs prediction sets with guaranteed contfidence 1 - €
CPs rely on two assumptions:

e Exchangeability: Generalization of i.i.d.

* Closed-world: Fixed label space
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Conformal Prediction and Non-Conformity Measure (NCM)

SVM Polynomial

[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Conformal Prediction and Non-Conformity Measure (NCM)

SVM Polynomial

[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Conformal Prediction and Non-Conformity Measure (NCM)

More dissimilar region

SVM Polynomial

[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Conformal Prediction and Non-Conformity Measure (NCM)

Test point

More dissimilar region

SVM Polynomial

[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Conformal Prediction and Non-Conformity Measure (NCM)

SVM RBF 3NN

o O
® - 05
° e
.. Wl
o
.. PY
o
OOO
Random Forests QDA Neural Network Neural Network
(output activation) (last hidden layer
w/ SVM RBF)
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Conformal Prediction and Non-Conformity Measure (NCM)

Test point

More

dissimilar .
SVM Polynomial SVM RBF 3NN

region

Q0 oﬁJ
o

Random Forests QDA Neural Network Neural Network

(output activation) (last hidden layer
w/ SVM RBF)



Conformal Prediction vs Conformal Evaluation

[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Conformal Prediction vs Conformal Evaluation

[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Conformal Prediction vs Conformal Evaluation

‘ 7, (@) @, )
_—
0 0.68 0.92
I 1- max(p,, p.) a-p)
e =1 e

[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/

;
T

0
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Conformal Prediction vs Conformal Evaluation

7, { J {@,0}
e —————————————
0 0.68 0.92 1
T 1 - max(p, p.) a-p) |
e=1 1 - credibility \ confidence € =0

p-value of class o

[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Conformal Prediction vs Conformal Evaluation

* |ow credibility means high probability of an impossible result

® This means assumptions could have been violated — drift!

Y, {@} {@.0)}
e ————————————— e e
0 0.68 0.92 1
1 - max(poapo) (1 'po) T
e=1 1 - credibility \ confidence € =0

p-value of class o

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift
https://s2lab.cs.ucl.ac.uk/projects/transcend/




Conformal Prediction vs Conformal Evaluation

* |ow credibility means high probability of an impossible result

® This means assumptions could have been violated — drift!

7, {@] @,0)}
y ————————————————————————————————————————————————————————————————————————————
0 0.68 0.92 1
1 - max(poapo) (1 'po) T
e=1 1 - credibility \ confidence € =0

p-value of class o

* Whereas CPs predict, CEs evaluate predictions using

the same statistical tools as a signal for concept drift

[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift
https://s2lab.cs.ucl.ac.uk/projects/transcend/




Transcend Calibration

Credibility

1.0

0.8

0.6

0.4

0.2

0.0

Correct Incorrect

Class 1

Correct Incorrect

Class 2

How much drift is too much?

Produce a threshold for each class
Optimize cost vs performance on training
and calibration sets

Maximise separation between credibility of

correct and incorrect decisions
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Transcend at Test Time

Credibility

1.0

0.8

0.6

0.4

0.2

0.0

Class 1

Class 2

e Credibilities of new examples are compared
against the threshold of their predicted class
* Above = keep the prediction

e Below = reject the prediction
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Transcend at Test Time

Credibility

1.0
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Rejection Cost

Credibility
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Rejection Cost

1.0

0.8

0.6

Credibility

0.4

0.2

0.0

Class 1 Class 2

* [AlSec 2021] Investigating Labelless Drift Adaptation for Malware Detection

* Actions for rejected points *:

* Manual inspection

e Downstream analysis
e Quarantine

* Exemption

* [AlSec 2021] INSOMNIA: Towards Concept-Drift Robustness in Network Intrusion Detection
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The Cost of Transductive Conformal Evaluators

e Underlying classifier retrained for every

training point

e Rooted in CP theory

e Often computationally infeasible

‘ Target of p-value computation

Remaining points
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Approximate TCE

‘ Target of p-value computation

Remaining points

e First attempt to improve on the TCE
* P-values computed in batches

* Relies on unsound assumption

76



Inductive Conformal Evaluator (ICE)

‘ Target of p-value computation

Remaining points

Excluded points used for prediction but not evaluation

Increase speed by splitting into
training and calibration sets
Rooted in CP theory
Computationally efficient

Informationally inefficient
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Cross-Conformal Evaluator (CCE)

Inspired by cross validation - multiple
ICEs in parallel vote on evaluation
Rooted in CP theory
Computationally efficient

Informationally efficient
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Experimental Setup
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Experimental Setup

Android
e DREBIN w/ ~260K apps (Jan 2014 - Dec 2018)

e Linear SVM, binary feature space

79



Experimental Setup

Android
e DREBIN w/ ~260K apps (Jan 2014 - Dec 2018)

e Linear SVM, binary feature space

Windows PE
e EMBER V2 w/ ~117K apps (Jan 2017 - Dec 2017)
e (radient Boosted Decision Tree (GBDT)

79



Experimental Setup

Android
e DREBIN w/ ~260K apps (Jan 2014 - Dec 2018)

e Linear SVM, binary feature space

Windows PE
e EMBER V2 w/ ~117K apps (Jan 2017 - Dec 2017)
e (radient Boosted Decision Tree (GBDT)

PDF
e Hidost w/ ~18%k apps (Aug 2017 - Sep 2017)

e Random Forest, teatures robust to drift

79



Experimental Setup

Android
e DREBIN w/ ~260K apps (Jan 2014 - Dec 2018)

e Linear SVM, binary feature space

Windows PE

N\
e EMBER v2 w/ ~117K apps (Jan 2017 - Dec 2017) C:/
e Gradient Boosted Decision Tree (GBDT) EXE
PDF

e Hidost w/ ~18%k apps (Aug 2017 - Sep 2017)

e Random Forest, teatures robust to drift

Thresholding Optimization

e Constraints: minimum F1 of 0.9 for kept elements @ rejection rate < 15%
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Results: Rejection Performance

[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Results: Rejection Performance

Approx-TCE
(10 folds)
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[IEEE S&P 2022] Transcending TRANSCEND: Revisiting Malware Classification in the Presence of Concept Drift
https://s2lab.cs.ucl.ac.uk/projects/transcend/



Results: Rejection Performance
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Results: Rejection Performance — Drift Rate
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[IEEE S&P 2022]
https://s2lab.cs.ucl.ac.uk/projects/transcend/
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Results: Rejection Performance — Drift Rate
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Results: Rejection Performance — Drift Rate
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